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Abstract
A recent construction of nonlocal symmetries for the Korteweg–de Vries,
Camassa–Holm and Hunter–Saxton equations is reviewed, and it is pointed
out that—in the Camassa–Holm and Hunter–Saxton case—these symmetries
can be considered as (nonlocal) symmetries of integro-differential equations.

PACS numbers: 02.20.Tw, 02.30.Ik, 02.60.Nm, 47.10.−g

1. Introduction

Three very important shallow water models first studied in [7, 8, 11, 24, 25, 27], the Korteweg–
de Vries (KdV), Camassa–Holm (CH) and Hunter–Saxton (HS) equations, present quite
different qualitative features (for instance, all smooth solutions to KdV exist globally in
time [40], but CH and HS admit smooth solutions which develop singularities in finite time
[43, 15] and smooth solutions which exist for all times [9, 13]) but, on the other hand, they
can be considered profitably from unified points of view: In [3, 4] R Beals, D Sattinger
and J Szmigielski analysed these equations from the point of view of scattering/inverse
scattering; in [26] B Khesin and G Misiołek showed that they exhaust, in a precise sense,
the bi-Hamiltonian equations which can be modelled as geodesic flows on (homogeneous
spaces related to) the Virasoro group; finally in [37, 38] the present author pointed out that
the existence of zero curvature formulations, quadratic pseudopotentials, modified versions,
‘Miura transformations’, conservation laws, and nonlocal symmetries for the KdV, CH and
HS equations follow from the fact that they belong to a same family of equations describing
pseudo-spherical surfaces, a concept reviewed in [36–38] and references therein.

This paper has two goals. First, to give a short account of the constructions appearing in
[38]; specifically, to show how to obtain nonlocal symmetries for the Korteweg–de Vries (KdV)
Camassa–Holm (CH) and Hunter–Saxton (HS) equations using quadratic pseudo-potentials,
in the spirit of [23, 31, 32] and the recent [39]. Second, to remark that, in the Hunter–
Saxton and Camassa–Holm case, these new symmetries can be understood as (nonlocal)
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symmetries of integro-differential versions of these two equations, to be recalled below. This
last observation appears to be of interest of its own, as it provides further motivation for
the geometric study of symmetries in the interesting—and still under-developed—case of
integro-differential equations [12, 29, 44].

The following notation will be used throughout, following [33]: independent variables
will be denoted by xi, i = 1, 2, . . . , n, and dependent variables by uα, α = 1, 2, . . . , m;
k-tuples J = (j1, . . . , jk), 0 � j1, j2, . . . , jk � n will denote multi-indices of order #J = k;
partial derivatives with respect to xi will be denoted by subindices; finally, Di will indicate
the total derivative with respect to xi ,

Di = ∂

∂xi
+

m∑
α=1

∑
#J�0

uα
J i

∂

∂uα
J

,

in which uα
J i = ∂uα

J

/
∂xi .

2. On nonlocal symmetries

Nonlocal symmetries of differential equations were first studied rigorously by A Vinogradov
and I Krasil’shchik in their seminal paper [42]. A complete account of their research appears
in [28, 29]; a short review and an application of ideas from [28, 29] to the KdV, Camassa–
Holm and Hunter–Saxton equations is in [38], and an operational version of their theory has
been recently advanced in [39]. Other approaches to nonlocal symmetries are considered in
[1, 5, 6, 10, 34, 35] and references therein.

Definition 1. A covering π of a system of partial differential equations �a = 0 is a triplet

({γb : b = 1, . . . , N}; {Xib : b = 1, . . . , N; i = 1, . . . , n}; {D̃i : i = 1, . . . , n}) (1)

of variables γb, smooth functions Xib depending on xi, uα, γb and xi-derivatives of uα , and
linear operators

D̃i = Di +
N∑

b=1

Xib

∂

∂γb

, (2)

such that the equations

D̃i(Xjb) = D̃j (Xib), i, j = 1, 2, . . . , n, b = 1, 2, . . . , N, (3)

hold whenever uα(xi) is a solution to �a = 0.

It will be understood hereafter that the index i runs from 1 to n and that the index b runs
from 1 to N, so that instead of (1) one will simply write π = (γb;Xib; D̃i). The variables γb

are new dependent variables—the ‘nonlocal variables’ of the theory—and the operators D̃i

satisfying equation (3) are new total derivatives which take into account the nonlocal variables
γb. Note that the operators D̃i satisfy D̃i(γb) = Xib, and that these equations are compatible
because (3) holds. Since on solutions to the system of equations �a = 0 the total derivatives
D̃i become ordinary partial derivatives, the equations

∂γb

∂xi
= Xib (4)

should hold for each index b and each index i whenever uα(xi) is a solution to �a = 0:
these compatible equations specify the relations between the dependent variables uα and the
variables γb.
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The nonlocal version of the formal linearization of the system �a = 0 is the matrix

�̃∗ =
(∑

L

∂�a

∂uα
L

D̃L

)
=



∂�1

∂u1
+ · · · +

∂�1

∂u1
I

D̃I

∂�1

∂u2
+ · · · +

∂�1

∂u2
J

D̃J · · ·
∂�2

∂u1
+ · · · +

∂�2

∂u1
K

D̃K · · · · · ·
...

 . (5)

Definition 2. Let �a = 0 be a system of differential equations and let π = (γb;Xib; D̃i) be a
covering of �a = 0. An ordered (m + N)-tuple of functions (Gα,Hb) depending on xi, uα, γb

and a finite number of xi-derivatives of uα , is a nonlocal π -symmetry of �a = 0 if and only if
the equations

�̃∗(G) = 0, (6)

and

D̃i(Hb) = D̃τ (Xib), (7)

hold whenever uα(xi) is a solution to �a = 0, in which G is the vector (G1,G2, . . . ,Gm)t ,
and the operator D̃τ appearing in (7) is given by

D̃τ =
m∑

α=1

∑
#K�0

D̃K(Gα)
∂

∂uα
K

+
N∑

c=1

Hc

∂

∂γc

. (8)

Note that equation (6) depends only on the vector G and the system �a = 0: following
Krasil’shchik and Vinogradov [28, 29, 42] one says that G is the π -shadow of the nonlocal
π -symmetry (Gα,Hb). Also important is to note that the differential operator D̃τ defined in
(8) is the nonlocal version of the infinite prolongation [33] of the vector field

Gα ∂

∂uα
+ Hb

∂

∂γb

,

taking into account the fact that the derivatives of the new dependent variables γb can be
written in terms of the variables xi, uα, uα

J , γb due to equation (4).
One usually says ‘nonlocal symmetry’ instead of ‘nonlocal π -symmetry’, and assumes

that a covering (1) of �a = 0 has been fixed. The fact that this approach to nonlocal symmetries
depends essentially on coverings implies that one should perhaps consider nonlocal symmetries
as properly generalizing the class of intrinsic symmetries studied in [2]. Further comments
on this point appear in [39].

Proposition 1. If (Gα,Hb) is a nonlocal π -symmetry of the system �a = 0, in which the
covering π is given by (1), then the vector field

Gα ∂

∂uα
+ Hb

∂

∂γb

(9)

is a generalized symmetry of the augmented system

�a = 0,
∂γb

∂xi
= Xib. (10)
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In other words, if (Gα,Hb) is a nonlocal π -symmetry of the system �a = 0, the linearized
equations

�a,τ = 0 and
∂

∂τ

(
∂γb

∂xi

)
= Xib,τ (11)

with uα
τ = Gα and γb,τ = Hb, are satisfied whenever uα(xi) and γb(x

i) are solutions to (10).
Conversely, if (9) is a generalized symmetry of the system (10), then (Gα,Hb) is a nonlocal
π -symmetry of �a = 0, in which π = (γb,Xib, D̃i) and D̃i = Di +

∑N
b=1 Xib∂/∂γb.

Proposition 1 is proven in [39], and several applications can be found in [23, 32, 36,
37, 39]. Since generalized symmetries transform solutions into solutions [33], proposition 1
implies the following important result:

Corollary 1. If uα
0 (xi) and γ 0

b (xi) are solutions to the augmented system (10), the solution to
the Cauchy problem

∂uα

∂τ
= Gα,

∂γb

∂τ
= Hb, uα(xi, 0) = uα

0 (xi), γb(x
i, 0) = γ 0

b (xi),

is a one-parameter family of solutions to the augmented system (10). In particular, nonlocal
symmetries send solutions to the original system �a = 0 to solutions of the same system.

3. Shallow water equations

This section is on pseudo-potentials and nonlocal symmetries for the equations due to Korteweg
and de Vries [7, 8, 27],

αut = βuxxx + γ uux, (12)

Camassa and Holm [11],

m = uxx − u, mt = −mxu − 2mux, (13)

and Hunter and Saxton [24],

m = uxx, mt = −mxu − 2mux. (14)

Henceforth ε and ν will denote real parameters. The two-parameter family of equations

−2ν2UXUXX + 3εUXU − ν2UXXXU + 2
3 (1 − ν5/2)UXXX + εUT − ν2UXXT = 0 (15)

was introduced in [38], and clearly it includes the KdV, CH and HS equations as special
cases. With the choices ε = 1 and 1 − ν5/2 = γ , equation (15) has been derived as a shallow
water equation by Dullin, Gottwald and Holm [20] via an asymptotic expansion of the Euler
equations. Also noteworthy is the fact that (15) can be interpreted as a geodesic equation on
the Virasoro group (it is equation (3.9) of [26] if the parameters β, α and b appearing there
are replaced by ν2, ε, and (2/3)(1 − ν5/2) respectively) and that it possesses a bi-Hamiltonian
formulation which can be deduced from [22]; see [38].

Remark 1. On bi-Hamiltonian PDEs and Virasoro group: The Hk Sobolev inner product on
the Lie algebra vir of the Virasoro group Vir is defined as [26, 18]

〈(f, a), (g, b)〉k =
∫

S1

k∑
i=0

(
∂i
xf

)(
∂i
xg

)
dx + ab,

in which (f, a), (g, b) ∈ vir and vir is identified with C∞(S1) × R. The KdV equation
corresponds to the geodesic flow on the Virasoro group with respect to the right-invariant
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metric induced by the H 0 inner product, and CH to the geodesic flow on Vir with respect to the
right-invariant metric induced by the H 1 inner product (see [26] and references therein). One
can also define a degenerate form on vir by 〈(f, a), (g, b)〉 = ∫

∂xf ∂xg dx +ab and extend to a
degenerate right-invariant metric on Vir. The Hunter–Saxton equation describes the geodesic
flow on an homogeneous space of Vir on which this metric becomes nondegenerate [26]. The
geodesic flows on Vir obtained with the help of other choices of Hk Sobolev inner products
do not possess natural bi-Hamiltonian structures [17, 18, 26].

3.1. Pseudopotentials

As is well known, the existence of quadratic pseudo-potentials for a given system of equations
�a = 0 follows from the existence of an sl(2, R)-valued linear problem associated with
�a = 0. Proposition 6 was obtained in [38] as a corollary to the fact that equation (15) is of
pseudo-spherical type. It may be checked by direct computations:

Proposition 2. Equation (15) is the integrability condition of the one-parameter family of
linear problems dψ = (X dx + T dt)ψ , in which the matrices X and T are given by

X =
[

0 (1/3)εζ + (1/3)
√

νε + ν2UXX − εU

(3/4)(1 + ζν2)−1 0

]
(16)

and

T =


− 1

2UX − 2
3ν5/2UXX + 1

3εUζ − 2
9νε

+ 1
3

√
νεU − 4

9

√
νεζ − 2

9εζ 2

+ 2
3UXX − ν2UXXU + εU 2

− (3/4)U + (1/2)ζ + (1/2)
√

ν

1 + ζν2
1
2UX

 , (17)

and ζ is an arbitrary real parameter.

Example 1. If ν = 1 and λ = (2/3)(1 + ζ ), equations (16) and (17) yield the matrices

X = 1

2

[
0 ελ + 2m

λ−1 0

]
, T = 1

2

[ −UX −2Um + ελU − ελ2

−1 − Uλ−1 UX

]
, (18)

in which m = UXX − εU . This is the associated linear problem for the CH and HS equations
derived in [36, 37].

Corollary 2. The equation

−2ν2UXUXX + 3εUXU − ν2UXXXU + 2
3 (1 − ν5/2)UXXX + εUT − ν2UXXT = 0 (19)

admits a quadratic pseudo-potential γ (X, T ) determined by the equations

−γX = 3

4(1 + ζν2)
γ 2 −

(
ν2UXX − εU +

1

3
ε(ζ +

√
ν)

)
, (20)

−γT = 1

2(1 + ζν2)

(
−3

2
U − ζ − √

ν

)
γ 2 + UXγ +

(
U(ν2UXX − εU) +

2

3
(ν5/2 − 1)UXX

− 1

3
ε(ζ +

√
ν)U +

2

9
ε(ζ 2 + 2

√
νζ + ν)

)
(21)

in which ζ is an arbitrary real parameter.
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Example 2. Taking ν = 0 and ε = 1 in (20) gives −γX = (3/4)γ 2 + U − (1/3)ζ , and
therefore one recovers the usual Miura transformation for the KdV equation. On the other
hand, if one sets ν = 1 and λ = (2/3)(1 + ζ ) in (20) and (21), one obtains

UXX − εU = γX +
γ 2

2λ
− ε

2
λ, (22)

−γT = −1

2

(
U

λ
+ 1

)
γ 2 + UXγ +

(
U(UXX − εU) − 1

2
εUλ +

1

2
ελ2

)
. (23)

Substitution of (22) into (23) implies that the Camassa–Holm equation (13) and the Hunter–
Saxton equation (14) possess the parameter-dependent conservation law

γT = λ

(
UX − γ − 1

λ
Uγ

)
X

. (24)

As in the KdV case, one can use (22) and (24) to construct sequences of conservation laws
for the CH and HS equations [11, 21, 25, 30, 36, 37]. It is therefore natural to postulate
equation (22) as the analogue of the Miura transformation for the CH and HS equations, and
(24) as the corresponding modified equation [36, 38].

3.2. Nonlocal symmetries

Substitution of (20) into (21) yields the conservation law

γT = [
2
3 (ζν2 + 1)UX − 2

3 (ζ +
√

ν)γ − γU
]
X

. (25)

In analogy with the Camassa–Holm case [36], this conservation law allows one to obtain the
following result:

Theorem 1. Set m = ν2UXX − εU , and let γ and δ be defined by the equations

γX = −3

4(1 + ζν2)
γ 2 +

(
m +

1

3
ε(ζ +

√
ν)

)
,

γT =
[

2

3
(ζν2 + 1)UX − 2

3
(ζ +

√
ν)γ − γU

]
X

,

(26)

and

δX = γ, δT = 2
3 (ζν2 + 1)UX − 2

3 (ζ +
√

ν)γ − Uγ, (27)

which are compatible on solutions of (19). The function

G = γ exp

(
(3/2)

δ

1 + ζν2

)
(28)

is the shadow of a nonlocal symmetry for equation (19).

Now one extends the shadow (28) to a bonafide nonlocal symmetry. Intuitively, as
anticipated in [23, 31, 32] and explained in [39], in order to make this extension one needs to
find the infinitesimal variations of the functions γ and δ as U is infinitesimally deformed into
U �→ U + τG, in which G is given by (28). Once this is done, proposition 1 allows one to
conclude that a genuine nonlocal symmetry has been found.

Theorem 2. Write equation (19) as a system of equations for two variables, m and U, as

m = ν2UXX − εU, mT = −mXU − 2mUX + 2
3 (1 − ν5/2)UXXX, (29)
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and let γ, δ and β be defined by the equations

γX = − 3

4(1 + ζν2)
γ 2 +

(
m +

1

3
ε(ζ +

√
ν)

)
, (30)

γT =
[

2

3
(ζν2 + 1)UX − 2

3
(ζ +

√
ν)γ − γU

]
X

, (31)

δX = γ, (32)

δT = 2

3
(ζν2 + 1)UX − 2

3
(ζ +

√
ν)γ − Uγ, (33)

βX =
[
ν2m +

1

3
ε(ν5/2 − 1)

]
exp

(
(3/2)

δ

1 + ζν2

)
, (34)

βT =
[
−1

3
(ν5/2 − 1)(2m + εU) − 1

2
γ 2 +

2

9
ε(2ζ + ζ 2ν2 − ν3 + 2

√
ν) − ν2Um

]
× exp

(
(3/2)

δ

1 + ζν2

)
, (35)

which are compatible on solutions of (29). The system of equations (29)–(35) possesses the
symmetry

W = γ exp

(
(3/2)

δ

1 + ζν2

)
∂

∂U
+

[
ν2mX +

3ν2γ

1 + ζν2
m + γ ε

ν5/2 − 1

1 + ζν2

]
× exp

(
(3/2)

δ

1 + ζν2

)
∂

∂m
+

[
ν2m +

1

3
ε(ν5/2 − 1)

]
exp

(
(3/2)

δ

1 + ζν2

)
∂

∂γ

+ β
∂

∂δ
+

(
ν2

[
ν2m +

1

3
ε(ν5/2 − 1)

]
exp

(
3

δ

1 + ζν2

)
+

3

4(1 + ζν2)
β2

)
∂

∂β
. (36)

Note that W is not the evolutionary representative of a classical symmetry of (29)–(35), as
it can be seen by using [33, Chapter 5]. The vector field W is a genuine first-order generalized
symmetry for the system of equations (29)–(35). Proposition 1 implies the following corollary.

Corollary 3. The vector field (36) determines a nonlocal symmetry of the system of
equations (29).

One can find the flow of the vector field (36) by integrating a system of first-order partial
differential equations. The system one needs to consider is

∂U

∂τ
= γ exp

(
(3/2)

δ

1 + ζν2

)
(37)

∂m

∂τ
=

[
ν2mX +

3ν2γ

1 + ζν2
m + γ ε

ν5/2 − 1

1 + ζν2

]
exp

(
(3/2)

δ

1 + ζν2

)
, (38)

∂γ

∂τ
=

[
ν2m +

1

3
ε(ν5/2 − 1)

]
exp

(
(3/2)

δ

1 + ζν2

)
, (39)

∂δ

∂τ
= β, (40)

∂β

∂τ
= ν2

[
ν2m +

1

3
ε(ν5/2 − 1)

]
exp

(
3

δ

1 + ζν2

)
+

3

4(1 + ζν2)
β2, (41)
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with initial conditions U(X, T , 0) = U0, γ (X, T , 0) = γ0, δ(X, T , 0) = δ0 and β(X, T , 0) =
β0 in which U0(X, T ), γ0(x, T ), δ0(X, T ) and β0(X, T ) are particular solutions to (29)–
(35). General theorems on existence, uniqueness and regularity of solutions to symmetric
hyperbolic systems such as (37)–(41) are known (see for instance [41]), and therefore one can
conclude that the foregoing construction determines two-parameter families of solutions to
equation (29). From a computational point of view, one can simplify the analysis of (37)–
(41) by noticing that equations (38)–(41) do not depend on U, and can therefore be solved
separately. Full details appear in [38].

3.3. Remarks on nonlocal symmetries and integro-differential equations

While one can eliminate the variable m from (29)—and therefore write (29) as a partial
differential equation for U—if one considers (29) as an equation for m only, this system
becomes an integro-differential equation. In the Camassa–Holm case, this integro-differential
approach has proven to be crucial: the properties of m determine whether solutions to CH
are global in time or represent breaking waves [13], and the nonlocal operator

(
1 − D2

x

)−1

appears prominently in a recent construction of conservation laws [30], in the study of peakon
dynamics and weak solutions [11, 14], in the scattering/inverse scattering approach to CH
[3, 19], and also in the rigorous proof that the least action principle holds for CH [16].

In the context of symmetry analysis of the general equation (29), the inverse of the operator
ε − νD2

x is also important in the following sense.

Theorem 3. If the variables m and U are related by

m = ν2UXX − εU, mT = −mXU − 2mUX + 2
3 (1 − ν5/2)UXXX, (42)

the functions γ, δ and β are defined by means of equations (30)–(35), and m, γ, δ, β satisfy
equations (38)–(41), then U satisfies equation (37), namely,

∂U

∂τ
= γ exp

(
(3/2)

δ

1 + ζν2

)
. (43)

The proof is straightforward: compute the derivative βT,τ using (35), compute βτ,T using
(41), and then simplify both calculations using (30)–(35) and (38)–(41). In the Camassa–Holm
equation case, this result is intuitively clear from an analytic point of view, since the operator
1 − D2

x connecting U and m is an isomorphism between Sobolev spaces (see for example
[14, 30]). From the point of view of formal geometry, however, one would like to interpret
this result as stating that the integro-differential equation

mT = −mXU − 2mUX + 2
3 (1 − ν5/2)UXXX,

in which U = (ν2DXX − ε)−1m, possesses the nonlocal symmetry

V =
[
ν2mX +

3ν2γ

1 + ζν2
m + γ ε

ν5/2 − 1

1 + ζν2

]
exp

(
(3/2)

δ

1 + ζν2

)
∂

∂m

+

[
ν2m +

1

3
ε(ν5/2 − 1)

]
exp

(
(3/2)

δ

1 + ζν2

)
∂

∂γ

+ β
∂

∂δ
+

(
ν2

[
ν2m +

1

3
ε(ν5/2 − 1)

]
exp

(
3

δ

1 + ζν2

)
+

3

4(1 + ζν2)
β2

)
∂

∂β
,

where the nonlocal variables γ, δ, β are determined by (30)–(35). It appears that this kind of
symmetries has not been studied in the literature: versions of a symmetry theory for integro-
differential equations are for instance in [12, 29, 44], but it would seem that they do not cover
the present example.
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